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SUMMARY

The object of this work was to optimize the tensile strength of a carbon-base

monofilament produced from a chemical vapor deposition process. Gas ratios of

BC13/CH4 and H2/CH4 of 2.34 were used in the gas system and carbon was used as a

substrate.

The relationship between total gas flow, gas flow patterns, reactor geometry,
and deposition temperature and the tensile strength of the monofilament was studied.

The most important parameter in the process was the deposition temperature.

Controlling the maximum temperature and the temperature profile of the monofilament

was required to produce high strength monofilament.

The chemical composition of the carbon-boron alloy was controlled by varying

the CH4:H 2 ratio in the gas composition. Attempts to produce a high tensile

strength monofilament by depositing a layer of high-strength, high boron content

alloy on the outer surface of the monofilament were unsuccessful.

High strength monofilament was also produced in the RF reactor. The chemical

composition of the carbon-boron alloy deposited in an RF reactor was the same as

that deposited in a DC reactor when identical gas compositions were used in each

reactor.

The tensile strength of the monofilament at 5000 C was 60% of the room temper-

ature strength for monofilament containing 77 w/o B in the alloy and 74% of

the room temperature strength for monofilament containing 66 w/o B. Th.e tensile

strength of monofilament was not changed after exposure to molten aluminum.



INTRODUCTION

There has been a great deal of interest recently, in the development of carbon

reinforcement for metal matrix applications. Most of this effort has-been .directed

toward the use of carbon multifiber yarns and tows. Carbon yarns are becoming more

readily available with various strengths and moduli and the cost of these yarns is

being reduced continuously. Initially attempts were made to produce these yarns
with high moduli, but recently attention has been given specifically to developing

a low cost carbon yarn with little scatter in strength and modulus. As the price

of these yarns has been lowered, the incentive for using carbon yarn in all types of

composites has increased. Adding to the impetus to use this yarn was the fact that

carbon researchers have even reported an increase in strength of carbon at elevated
temperatures. The low cost of carbon yarn made it attractive for use in aluminum

and its high temperature properties has induced researchers to consider it for use

in high temperature matrices such as nickel.

For the past several years there has been a great deal of effort directed

toward producing carbon-aluminum and carbon-nickel composites. With any metal
matrix one of the most difficult problems has been to impregnate the yarn with metal

matrices so that the individual fibers in the yarn would be evenly dispersed. There

is also an additional problem that the properties of the fibers are easily deteriorated
by reactions with the matrix material. If attempts are made to coat the fibers with

barrier layers care has to be taken that the small carbon fibers are not affected by
diffusion of the coating into the body of the fiber.

Although some success has been obtained in forming carbon yarn-aluminum com-

posites (Ref. 1), these composites still do not have properties competitive with

those of boron-aluminum composites containing relatively large boron filaments.

The relative advantages and disadvantages of using carbon multifiber yarns and

tows versus using carbon monofilaments have been discussed in Ref. 2. Fabrication

problems would be greatly reduced when large diameter carbon monofilaments are used.

Composite fabrication techniques currently used with boron filaments could be trans-

ferrable and the broad background of boron-aluminum composite experience could be

utilized, instead of being forced to develop a whole new technology based upon small

diameter carbon multifiber yarns and tows. In addition, protective coatings could

be applied much more easily on large diameter monofilaments. Also, the relative

fraction of coating material to filament area would be much less for the monofila-

ments, thus increasing the effective volume fraction of usable reinforcement and

lessening the effect of the coating on the properties of the composite.

In an effort to obtain large diameter carbon monofilament for use as reinforce-

ment for metal matrix composites, NASA-Lewis awarded several contracts to develop

large diameter carbon monofilament using different fabrication methods. The first

method involved the impregnation with resin of commercially available small-diameter

carbon yarns and tows. The resin impregnated bundles was then pyrolyzed to form a
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carbon yarn-carbon matrix composite monofilament (Refs. 3 and 4). Although reason-

able strengths were obtained, difficulty was encountered in making these composite

filaments because of nonuniform impregnation and cracking due to thermal expansion

mismatches during pyrolysis.

The second approach consisted of using the chemical vapor deposition (CVD)
method. Contracts were awarded to Hough Laboratory (Refs. 5 and 6). Initial work
was done using a tungsten wire substrate, but it was found that better results were

obtained using a carbon fiber substrate. Initially, pure pyrolytic graphite was

deposited upon the substrate, but it was found that failure would occur by tele-
scoping of the carbon layers over each other. This problem was eliminated by the
addition of borane gas to the reactant hydrogen-hydrocarbon gases, which caused
boron to be deposited to pin the carbon slip planes. This material contained approx-

imately 30-40 percent boron.

UARL also has done research in the area of large-diameter carbon-base monofil-

aments. Attempts have been made using resin pyrolysis, direct conversion of large

organic precursor fibers and the CVD process. Each technique had drawbacks, but

the CVD process was selected for further study because it was felt to have the most

potential for making the desired monofilament, even though the monofilaments produced

were initially weak. It was decided to employ a combination of methane and boron

trichloride as the reactant gases. The reactor used was similar to that used for

boron filament development, Fig. 1, where the substrate is heated resistively and is

drawn through mercury seals into a chamber where the reactant gases are introduced.

Carbon fiber produced by Great Lakes Carbon Company was chosen as the substrate

because of its low density and because of previous experience.

In the initial NASA-Lewis Contract awarded to UARL, NASA CR-121229, Ref. 7, it
was shown that a high modulus carbon-boron alloy monofilament could be chemically

vapor deposited onto a carbon substrate from a H2, BC1 3 and CH4 gas mixture. The

modulus was linearly dependent on the w/o boron in the monofilament. Monofilaments

with 39 w/o through 75 w/o boron were amorphous and the w/o boron of the monofila-

ment was controlled by the gas mixture. The condition of the carbon substrate fiber

was important in determining the strength of the monofilament. Inherent with the

carbon substrate fiber are outgrowths and surface impurities. In some cases, the

impurities were localized in the outgrowths. The carbon-boron deposition reacted

with these impurities and either terminated an experimental run by breaking the

monofilament, within the reactor, or produced monofilament with excessive scatter in

the tensile strength. It was assumed that boron was reacting with the impurities,

because as the w/o boron in the carbon-boron alloy increased, the frequency of the

reactions increased and the scatter in tensile strength also increased. Instead of

covering the impurities with a precoat the investigators chose to devise a method

of cleaning the substrate.

It was determined that by passing the substrate fiber through an RF reactor in

an atmosphere of chlorine the impurities, and in some cases the outgrowths, could be

removed from the surface of the fiber. Unfortunately, the process could not be

standardized because the substrate velocity and fiber temperature required to clean

the fiber appeared to vary with each shipment of fiber.
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The investigations conducted in this contract are a continuation of.the research
described in NASA CR-121229 (Ref. 7). The object of this program was to optimize the
UARL chemical vapor deposition process to produce a large-diameter, high-strength,
high-modulus carbon monofilament. Parameters such as deposition temperature, sub-
strate velocity, reactor geometry, gas ratios and total reactant gas flows were

studied. The effect of variations of these parameters were noted from both property

measurements such as diameter, tensile strength, Young's Modulus and density, and

from the optical and electron microprobe analyses.

The program was divided into the three tasks listed:

Task I - Process Development and Optimization

Task II - Property Evaluation

Task III - Reports

To attain this objective, the program was divided into three phases:

1. Investigate the effects of reactor geometry, gas flows and reactor

temperature profiles of a single stage DC reactor.

2. Investigate the possibility of increasing the strength of the monofila-

ment with an outermost layer of high strength, high boron content
carbon-boron alloy.

3. Compare the properties of monofilament produced in a single stage RF
reactor with monofilament produced in a DC reactor.

RESULTS

Initial Experimentation

It was determined, in NASA CR-121229 (Ref. 7), that the carbon-boron composition of
the monofilament was sensitive to the composition of the reactant gases - specifically,
the CH4 to H2 ratio. Consequently, a fixed gas composition was used for experimenta-
tion in the DC reactor. The ratio of gases in this composition were H2 to BC1 3 = 1:1,
and CH4 to BC13 or H2= 2.34:1. This ratio yields a monofilament with an average
of 66 w/o boron, and gives the most reproducible results.
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The initial experimentation consisted of two 4 x 4 Latin Squares. In both

squares the temperature levels were 1150, 1170, 1190 and 1210
0 C. The substrate

velocities were 0.169 cm/sec (20 ft/hr), 0.254 cm/sec (30 ft/hr), 0.338 cm/sec

(40 ft/hr), and 0.423 cm/sec (50 ft/hr). Total gas flows were 600, 700, 800 and

900 cc/min.

The substrate fiber for the first Latin Square was Great Lakes carbon monofila-
ment Lot #1142, package #2 which had been cleaned in an RF reactor in chlorine at
18000C at a fiber velocity of 0.677 cm/sec (80 ft/hr).

Upon completion of these experimental runs, Nos. NC-1-16, 600 feet of the
same substrate was cleaned in chlorine at a draw speed of 0.594 cm/sec (70 ft/hr).
The object was to repeat the series of experiments with the same substrate cleaned

with different parameters. Unfortunately, the substrate cleaned at a substrate
velocity of 0.594 cm/sec would not produce long runs.

Random sections of the fiber produced violent reactions within the reactor.
Figure 2 is a scanning electron microscope photograph of the fracture surface asso-

ciated with one of these reactions and Fig. 3 shows the electron microprobe analysis
of this fracture. Only silicon and chlorine were detected as impurities.

Figure 4 is a section of the substrate fiber within two feet of the section
that caused the fracture shown in Fig. 2. Silicon and a trace of potassium and
calcium were detected as impurities in this surface.

Attempts were made to improve the substrate by cleaning in chlorine at 180000C
at a substrate velocity of 0.51 cm/sec (60 ft/hr). At this velocity, the surface
of the substrate fiber became pitted and it was decided not to use this substrate for
further monofilament studies. Because of the problems associated with substrate
fiber Lot #1142, Lot #1117 was chosen as a substrate for the monofilament produced
for the second Latin Square analysis. Lot #1117 was cleaned in chlorine at 18000C
at a substrate velocity of 0.594 cm/sec.

Electron microprobe chemical analyses of the surface of both substrates cleaned

at various parameters is given in Table I.. With the exception of sulfur and silicon,

the impurities listed are associated with outgrowths on the surface of the fiber.
Figure 5, a scanning electron microscope photograph of Great Lakes Carbon Co. Lbt

#1117, package #3, in the as received condition, shows a typical outgrowth. Sulfur
is inherent in the carbon substrate fiber, and it is uniformly distributed throughout

the fiber.

To date, Lot #1142 is the only substrate fiber to show random sites with a

relatively large amount of silicon.

The tensile data of the monofilament produced for first Latin Square analysis

- run Nos. NC-1 through NC-16 - are shown in Tables II-A,B,C,D.

5



The data for the second Latin Square analysis - run Nos. NC-21 through NC-24

and NC-27 through NC-38 are shown in Tables III-A,B,C,D. The substrate velocities
for this Square were randomized in a different pattern than that used in the first
analysis.

The effects of the parameters on the average UTS and the average diameter of

the carbon based monofilaments are shown in Figs. 6 through 11. Normally, the

temperature of the monofilament is monitored at a point 1/3 of the total reactor
length down from the top electrode. However, during experimental run number NC-28,
it was observed that the effect of changing temperature draw speed and total gas
flow over a reasonably wide range of values considerably changed the temperature
profile of the monofilament in the reactor. Therefore, on experimental runs subse-

quent to NC-28, the temperature of the carbon based monofilament was measured at
the top electrode, the same standard measuring point described above, and at the
bottom electrode. The temperature profile data for runs NC-29 through NC-38 are
given in Table IV. Photomicrographs of cross sections of the monofilament produced
in experimental runs NC-21 through NC-24 and NC-27 through NC-38 are shown in Figs.
12, 13, 14 and 15.

A Latin Square analysis indicates the effect of individual parameters on the
average value of a property being investigated which would lead to the optimization
of the property being studied. For the experiments described herein, the properties
investigated were monofilament tensile strength and diameter. The graphs of Figs. 6
through 11 show essentially identical trends of tensile strength and diameters,
regardless of substrate, as functions of the parameters studied. The variation in
the average diameter vs. substrate velocity or total gas flow for the two Squares,
Figs. 7 and 8,may be due to the fact that temperature was controlled at a point
rather than along the entire monofilament. It has been shown that differences in
profiles exist for the same measured temperature. This can be seen in studies of
ring formation in the monofilament. Note that although the temperature is the same
for runs NC-24, NC-30, NC-34 and NC-38 only the former two show the presence of rings
(Figs. 12 through 15). From data attained and presented in NASA CR-121229 (Ref. 7)it was
concluded that the interior rings represented a higher carbon content alloy.

The average strength does not vary as much as the diameter as a function of
the parameters studied, Figs. 9, 10 and 11. But, it is interesting to note that
the average strength of monofilament produced at 11500'C and at 1210 0C, shown in Fig.
9, is lower than that produced at temperatures in between.

The lower strength of the fiber produced at 11500C would seem to be a real
property of the monofilament since cross sections show no tendency for compositional
changes (ring formation) within the fiber. This would imply that the outermost
deposition layer - that portion of the monofilament that is deposited at the bottom
of the reactor at a temperature of approximately 11000C - would be weaker than the
inner portions of the monofilament deposited at higher temperatures. The assumption
was, to a certain extent, proven in the fracture surface study of the monofilament
produced in runs NC-1 through NC-16. The fracture surface of all monofilaments in
these runs with tensile strength less than 173 KN/cm2 (250 ksi) observed with a
Scanning Electron Microscope showed that many of the fractures were surface initiated.
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The reason for the lower strength of monofilament produced at 12100 C is not
known, but it may be related to the tendency for ring formation (Figs. 12 and 13) at
the higher temperature.

Monofilaments from run NC-24, NC-29 and NC-30 (those which contained rings)
were studied by X-ray diffraction techniques. No evidence of crystallinity was ob-
served in any of the X-ray patterns.

Because the combined effect of changes in total gas flow, substrate velocity
and deposition temperature were not successful in optimizing the monofilament
tensile strength, the remaining experimentation to optimize the strength properties
of the fiber were directed toward obtaining a uniform temperature profile within the
reactor.

DC Reactor Geometry Configuration

The standard DC reactor used for the experimentation, Fig. 1, consisted of a

1.5 cm glass tube with ends expanded to 2.22 cm to accept top and bottom stainless
steel electrodes. The overall length of the reactor was 66 cm.

Reactant gases were introduced into and exhausted from the reactor through stain-
less tubing that extended through the electrodes and were silver soldered to them.

The substrate fiber passed through the reactor though 0.254 mm sapphire jewels
centered in the electrodes. The reactor was sealed by means of O-rings at the elec-
trode - reactor glassware interface and by a mecury pool at the substrate fiber-jewel
orifice interface. The mecury also provided the electrical path to supply power to
the substrate fibers.

In a DC reactor, the temperature profile of the monofilament depends upon the
length of the reactor, the substrate velocity, the gas composition and the maximum
temperature obtained. Because of resistance changes in the monofilament as the
diameter of the monofilament increases, a constant current power supply is necessary
to prevent thermal runaway. The overall effect in a DC reactor is a lower tempera-
ture of the monofilament at the exit electrode than anywhere else in the reactor.
Convection current losses are greater at the exit end of the monofilament, the
larger diameter increases surface radiation loss and, with constant electric current,
less power is dissipated in the larger diameter monofilament.

The hottest portion of the monofilament is just inside the entry electrode. This
hot spot can be controlled to a certain extent by varying gas velocity or gas compo-
sition. For example, a gas composition with a high hydrogen content would cool the
monofilament just below the entry electrode and smooth out the hot spot.

Another technique of controlling the temperature profile of a DC reactor is to

use a multi-stage reactor system. With a proper balance between substrate velocity
and individual stage lengths, the diameter difference of the monofilament within a
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stage is controlled such that the differences in surface radiation losses and mono-

filament power dissipation in the area of the exit electrode are not excessively

different from those at the entrance electrode. The desired final diameter of a

monofilament or a specified production rate determines, within practical limits,

the number of stages that comprise a system.

Although multi-stage systems deminish the temperature profile effects encountered

in a single-stage DC reactor, they do not eliminate them. At the same time, multi-

stage systems necessitate a more complex plumbing system for the reactant gases and

introduce sites of possible contamination - the interconnecting electrodes between

stages. Because of the simplicity of a single stage reactor system, it was decided

to continue experimentation with a single stage reactor and to investigate reactor

geometric and gas flow patterns that might produce a uniform temperature within the

reactor. The reactor geometries were based on experience acquired at UARL on the

use of the chemical vapor deposition process.

In the experimentation conducted, the temperature of the monofilament was

measured at locations:

1. Within 2.54 cm of the entry electrode, designated T

2. At the standard control point approximately 1/3 of the reactor length

below the entry electrode, designated C

3. In cases where a side entry port was used, at the point where the side

entry gas would strike the monofilament, designated S

4. Within a 2.54 cm of the exit electrode designated B

The temperatures recorded are averages with a variation of approximately 150C.

Many low tensile strengths were obtained in the experimentation and were tenta-

tively attributed to the geometry or gas pattern changes. The data of experimental

runs with poor tensile properties are tabulated listing only high, low and average

values along with the coefficient of variation. Individual tensile data are tabulated

for experimental runs in which there would appear to be an enhancement of the CVD

process. With the exception of Run No. NC-57, each sample was given 10 individual

tensile tests.

The substrate used was Great Lakes Carbon Lot No. 1117, Pkg. 3 cleaned in chlorine

at 18000 C with a substrate velocity of 0.594 cm/sec.

The first attempt at controlling the temperature profile involved the use of a

tapered reactor. When the smaller diameter of the taper was adjacent to the gas inlet

the reactor was designated as in the normal position. A 1800 rotation of the reactor

was designated as the inverted position. See Fig. 16. Runs No. NC 41, 42, 43, 48A, 48B
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and 48C were made with this reactor in the normal mode, and the temperature profiles
and tensile data are shown in Table V. The individual tensile data for Runs No.
NC-43 and NC-48A are given in Table VI. The tapered reactor was then used in the
inverted mode and runs were made at total gas flows of 700, 800 and 900 cc/min.
These data are shown in Table VII.

Next, a side entry port reactor was fabricated so that gas additions could be
made to the reactor. The side port was located approximately 1/3 of the total
reactor length up from the exit electrode with an entry angle of 300 . The angle
was arbitrarily chosen to prevent gas addition from directly impinging upon the
monofilament. The reactor in this configuration was designated as a normal side
port reactor and a 1800 rotation of the reactor was designated as an inverted side
port reactor. See Fig. 17.

With the reactor in the normal mode and 800 ce/min of BC13, H2, CH4 gas composi-
tion introduced at the entry electrode, 100 cc/min N2 was introduced at the side
port. Unfortunately, a break occurred within the reactor after a 2 min. run. The
data for this run NC-57 are shown in Table VIII.

The reactor was then used in the inverted mode and with 800 cc/min of composi-
tion gas introduced at the entry electrode, 100 cc/min of N2 was introduced at the
side port for runs with two different filament temperatures. The experiments were
repeated except that Ar was used instead of N2 - Runs NC-60 and NC-61. The data
for these runs are shown in Tables IX and X.

N2 and Ar were chosen for these experiments because they have low thermal
conductivities, and are not known to effect the deposition process. The experiments
were designed to investigate the effect of lowering the thermal conductivity of the
gases within the reactor on the temperature profile of the fiber.

These experiments were repeated and expanded somewhat. The experiments were
run with 100 cc/min of Ar introduced into the side port, Run No. NC-113, and with
100 and 200 cc/min of N2 introduced into the side port, Run Nos. NC-114 and NC-115.
The tensile data and the monofilament temperature profiles are shown in Tables XI-A
and XI-B. Run Nos. NC-116, 117, 118 and 119 are 1/2 hour divisions of a continuous
two hour run made under conditions similar to those used for Run No. NC-115. The
overall average of these 40 measurements is 190 KN/cm2 (276 ksi) ± 50 KN/cm 2 (60 ksi).

Radial Change in Alloy Composition

The experimentation to change the boron content in the surface of the fiber
consisted of using the side entry port reactor in the normal position, Fig. 17,
and introducing H2 into the side port. Runs were made with 700, 800, 900 and 1000
cc/min total gas flow of the CH4 , BC13 and H2 composition into the top of the
reactor and either 100 or 200 cc/min of H2 injected into the side port. The data
for these experiments are shown in Table XII and the individual tensile test data of
Run No. 53 is shown in Table XIII.
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A third reactor was fabricated and is shown in Fig. 18. With this reactor, gas

was introduced at the top and bottom of the main reactor body and exhausted through

the side port. The gas ratio injected into the bottom of the reactor was a ratio
known to yield a higher boron content in the deposit than that injected at the top
electrode.

Two experiments were conducted using this reactor. In both experiments a gas

composition with ratios H2 :BCl 3 = 1:1, CH4:H 2 = 2.34:1 and CH4 :BCI 3 = 2.34:1 was

fed into the reactor through the top electrode and a composition with ratios

H2 :BCl 3 = 1.22:1, CH4 :H2 = 1:.44 and CH4 :BC1 3 = .44:1 was fed into the bottom of
the reactor through the bottom electrode and the reactant gases were exhausted

through the side port.

In Run No. 72, the total gas flow into both top and bottom electrodes was 755
cc/min while in Run No. 71, 755 cc/min was introduced into the top electrode and

355 cc/min was introduced into the bottom electrode. The tensile data for mono-

filament produced in these experiments are shown in Table XIV.

In both experiments the effect of exhausting gas through the side port was to

greatly lower the temperature of the monofilament in the portion of the reactor below
the side port. The decrease in temperature was less severe with the smaller total

gas flow introduced into the bottom of the reactor - Run No. 71.

One final experiment was conducted using this reactor. The gas flow pattern

was changed by introducing 755 cc/min of gas ratio CH4:H 2 = 2.34:1.0 into the top

electrode and 377 cc/min of gas ratio CH 4:H2 = 1.0:1.2 into the side exit port.

Gas was exhausted through the bottom electrode. The temperature profile of the
monofilament within the reactor under these conditions was far from ideal. Mono-

filament temperature was 11720 C at the top electrode, 10950 C just above the side

port, 11150C just below the side port and 10950C at the bottom electrode. The

resultant monofilament was friable and only five tensile specimens could be tested.

The data for this run, NC-ll0 ,are shown in Table XV-A, B. The substrate for this

experiment was Great Lakes Carbon, Lot #1117, package #4, cleaned in chlorine at

17000 0.

RF Reactor Experiments

The RF reactor, Fig. 19, utilizes a power coupling system which requires no
physical contact to the substrate fiber while supplying the energy required to heat

the substrate. The system is comprised of three units, the RF power supply and

controls, the power splitting and phasing network and a pair of resonate coupling
cavities.

The power supply operates at 40.68 MHz and is capable of delivering approximately
1 kw of RF power into a 50 ohm load. The power controls regulate the RF output
power to maintain the substrate fiber temperature at a predetermined value. Tempera-

ture control is accomplished by monitoring the brightness of the substrate fiber with
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a photocell and maintaining that brightness at a desired level. The level is
determined by an optical pyrometer temperature measurement of the substrate fiber.

The 50 ohm output of the power supply is split and phased to drive two resonate
coupling cavities in push-pull. The splitting network has the capability of deliver-
ing power to either cavity over a range of 0 to 100%. Phasing of the output is
accomplished by using different lengths of the coaxial cable connecting the splitting
network to the cavities.

The cavities are identical coaxial resonators approximately 50.8 cm (20 in.)
long and 9.16 cm (4 in.) in diameter. The center conductor is a 1.90 cm (0.75 in.)
copper pipe electrically connected to one end of the 9.16 cm outer line and capaci-
tively loaded at the other end. The resonate frequency of the cavity is the
operating frequency of the power supply, 40.68 MHz.

A 1.3 cm pyrex tube passes through the 1.9 cm center copper tubes and the
cavities are secured approximately 91.6 cm apart with the capacitively loaded ends
facing each other. The ends of the pyrex tube are fitted with gas seals, schematic-
ally shown in Fig. 20. With the substrate fiber strung through the glassware, the
coupling cavities are adjusted to produce the field configuration required to couple
power into the fiber. By adjusting the power division between the two cavities, the
system provides a uniform substrate. fiber temperature in the area between the two
resonators.

The exact mode of coupling that exists is not fully understood however, the
impedance or loading which is impressed across the resonator can be represented by
a high resistance load across an auto transformer. The resonator must be driven at
a tap point which is equivalent to the coaxial cable impedance, 50 ohms, if optimum
power is to be coupled to the fiber.

Substrate fiber conductivity and diameter are the two major parameters which
determine the resonate loading. Changing either of these parameters will change
the loading and subsequently change the impedance at the tap point on the resonator.
Some variation of the tap point impedance can be tolerated without changing the
position of the tap, but gross changes in the fiber characteristics, such as changing
the substrate fiber from tungsten to carbon, does require a change in the position
of the tap to return the resonator to a 50 ohm input impedance.

Before using the RF reactor for the production of carbon based monofilament,
the tap point of the resonating cavities had to be changed to match the impedance
of the carbon substrate fiber. As was the case in studies using a DC reactor,
the gas composition with ratios H2 :BC1 3 = 1:1, and CH4 to BC13 or H2 = 2.34:1 was
considered to be a standard for the experimentation with the RF reactors. However,
other gas compositions were used to comparthe chemical composition of carbon-boron
alloy monofilament produced in an RF reactor with that produced in a DC reactor.
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The substrate fiber used in the first experiments was Great Lakes Carbon Co,,

Lot #1190, Package #3 in the as received condition. The total gas flow was 1200

cc/min and the substrate velocity was 0.59 cm/sec (70 ft/hr). Experimental Run

Nos. NC-62 and NC-63 were made with the standard gas composition (CH4 to H2 ratio

of 2.34:1). Monofilament temperatures were 1800C for NC-62 and 12100 C for Run No.

NC-63. The tensile strength data for these runs are shown in Table XVI.

The gas composition was then modified slightly and monofilament was produced
from the new ratios. These experiments were designed to provide a cursory investi-
gation to examine the effect of changing gas composition on tensile strength.

Run NC-64 was produced from a gas composition with ratios H2 :BC1 3 = 1.0:2.0,
CH4 :H2 = 4.0:1.0 and CH4:BC13 = 4.0:1.0.

Run NC-66 was produced from a gas composition with ratios H 2 :BC1 3 = 1.0:1.0,
CH4:H 2 = 1.0:2.0 and CH4 :BC13 = 1.0:2.0.

Deposition temperature for Run NC-64 was 12250 C and for Run NC-66 was 11500 C.
The total gas flow and 0.59 cm/sec respectively.

The tensile data for Runs NC-64 and NC-66 are shown in Table XVII.

Generally, lower tensile strengths were expected whenever the carbon substrate
fiber was used in the as received condition. But it was not felt that the substrate
fiber itself could account for the poor tensile strength results of Run NC-63.
Consequently, the RF reactor system was re-evaluated. More critical substrate
impedance measurements were made and the location of the tap points of the resonating
cavities were changed. The temperature control system was serviced and the experi-
ments were repeated.

Monofilament was produced with Great Lakes Carbon Lot #1190, Package #1 in the
as received condition as the substrate fiber. The tensile strength data from these
experiments - Runs Nos. NC-73 through NC-78 - are shown in Table XVIII, A and B.
The substrate fiber was then precleaned in chlorine at 1700 0C with a substrate
velocity of 0.59 cm/sec (70 ft/hr) and monofilament was produced from this precleaned
fiber. These tensile strength data - Runs NC-79 through NC-84 are shown in Table
XIX, A and B.

The gas composition for the above experiments had the following ratios,
H2 :BC13 = 1.0:2.8, CH4 :H2 = 1.0:1.2 and CH :BC1 = 2.34:1.0, or a CH4 :H2 ratio of
1.0:1.2. The total gas flow was 1700 cc/min.

Monofilament was also produced using the precleaned carbon fiber as a substrate
and a gas composition with the standard CH 4 :H2 ratio of 2.34:1. The total gas flow
for these experiments was 1200 cc/min and the tensile strength data are shown in
Table XX, A and B.
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Some excellent monofilament was produced - note Runs NC-73, 77, 80, 82 and 83 -
'Ut the variation of the diameter in almost all runs was excessive. It was believed
that the inconsistency in the tensile strength data - compare Run Nos. 82 and 84
was directly related to diameter fluctuations which in turn were caused by tempera-
ture excursions. The temperature of the monofilament in the reactor varied in an
erratic manner. During some experiments, the temperature fluctuations were visually
disdernable and in others, the only indication of a temperature fluctuation was the
variations of the diameter of the monofilament produced.

A second servicing of the temperature control system revealed an exposed wire,
a potential RF path to ground, in the cable connecting the temperature sensing
transducer to the control electronics. After the cable had been replaced a correla-
tion between monofilament temperature fluctuations or, equivalently, diameter
fluctuations and voltage fluctuations in the power line feeding the RF amplifier
was observed. A power line regulator was obtained but the only instrument available
was a mechanical type - regulation accomplished with a motor driven variable trans-
former. This type of regulator works well for small line fluctuations, but the
response time of the unit is too long when it has to accommodate large changes in
voltage. Consequently, experimental runs in the RF reactor were conducted only during
periods of relatively stable line voltage - midmorning and midafternoon. Line
voltage was monitored for all remaining experiments and the range of the diameter of
the monofilament in any experiment is an indication of the instability of the line
voltage. It is interesting to note in the data presented that strong monofilament
can be produced even though the diameter varies up to approximately 15 microns
(0.0006 in.). When the line voltage (temperature) fluctuations are large enough to
produce monofilament with diameter variations of 15 microns or greater, there is a
tendency for sections of the monofilament to develop rings of different composition,
resulting in weak monofilament.

The substrate for monofilament produced in the final experiments conducted on
the RF reactor was Great Lakes Carbon, Lot #1190, Package #2. Run NC-97, gas ratio
1.0:1.2 was made with the substrate fiber in the as received condition and subsequent
runs were made with fiber that had been cleaned in chlorine at 17000C. The tensile
strength data for Run No. NC-97 are shown in Tables XXI, A and B.

Run Nos. NC-98 through NC-103 were made to investigate the effect of temperature
on the tensile strength of the monofilament. The gas ratio for Run Nos. 98, 99 and
100 was 1.0:1.2 while the ratio for Run Nos. 101, 102 and 103 was 2.34:1.0. The
tensile strength data are shown in Tables XXII, A and B, and XXIII, A and B,
respectively. Included in Table XXII, A and B, are Run Nos. NC-104, 105 and 112,
repeats of Run No. NC-100.

Run No. NC-111 essentially a repeat of Run NC-102 is included in Table XXIII.
Run Nos. NC-111 and NC-112 were made on the same day, and during these runs power
line fluctuations were extreme. In addition, Runs NC-111 and NC-112 are specimens
made from a different lot of substrate. Ring formation is apparent in the monofila-
ment produced in Runs NC-11 and 112.
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The initial calculation to determine the flow rates for the CH4:H 2 ratio of

1.0:1.2 yielded a total flow of 1700 cc/min. Run Nos. NC-98, 99, 100, 104, 105 and
112 were made with this total flow. The flow was reduced to 1275 cc/min to compare
the tensile strength of monofilamnent produced from ratios 1.0:1.2 and 2.34:1 with

comparable total gas flows. Runs were made at 1180 0C and 12000C - NC-107. The
tensile strength data for these runs are shown in Tables XXIV, A and B. The poor
tensile properties of the monofilament produced in Run. No. NC-107 should be

attributed to the RF power supply instability.

Elevated Temperature Tensile Strength of the Carbon-Boron Alloy Monofilament

The elevated temperature strength of Run Nos. NC-97, 99 and 103 was measured
at 5000C using a system described elsewhere (Ref. 8).

Briefly, the system is a 10 cm long by 8 mm diameter silica tube centered in a
core heater. The ends of this tube are reduced to approximately 1 mm. For inert
atmosphere testing, a 55 cc/min argon flush was maintained throughout the test with
argon flowing into the tube through a side port and exiting through the reduced
ends. For measurements made in air, the side port and the ends were exposed to the
atmosphere. The hot zone in the center of the tube was relatively flat over 2.54 cm,
varying by ±100C at a nominal 5000C.

To tensile test a sample, the furnace was placed between crossheads, and a
23 cm length of monofilament was threaded through the tube and secured to the cross-
heads with wax. Each sample was held at temperature for nine minutes - sufficient
time for the wax to s6lidify enough to prevent pull out - and then tested. Any
fractures that occurred outside the furnace were disregarded and fractures within the
furnace were assumed to have occurred within the hot zone.

The tensile data of these measurements are shown in Table XXV, A and B, XXVI,
A and B, and XXVII:, A and B. The room temperature (RT) tensile strength is shown
in previous tables and is repeated for comparison purposes.

Tensile Properties of Monofilament After Exposure to Molten Aluminum

Carbon-boron alloy monofilament-aluminum composites were fabricated and the
tensile strength of monofilament extracted from the composite after fabrication wasmeasured.

The composites were fabricated by plasma spraying a layer of 713 Al onto a sheet
of 6061 Al foil. Monofilament was then placed between sheets such that the 713Al
surface was in contact with the monofilament. The lay up was then hot pressed at
6000C for 15 minutes at 206.7 N/sq.cm. (300 psi). This hot press temperature,
approximately 100C above the liquidus of 713 Al assured a large percentage of molten
aluminum. After fabrication, the monofilament was leached from the composite with
HC1 and the tensile strength was measured.
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The monofilament used in these experiments was from Run No. NC-102. Adjacent
lengths of the fiber were divided into two groups. One group was used to fabricate
the composite and the second group was used as a control. The data from this experi-
ment are shown in Table XXVIII.

DISCUSSION

The experimentation completed in NASA CR-121229 (Ref. 7) showed that the cleaning

of the substrate fiber in C12 was worthwhile. But it was determined that the clean-

ing parameters (fiber velocity and substrate fiber temperature) could not be standard-

ized because each lot of substrate fiber and even different spools of fiber from the

same lot contained different kinds of impurities and flaws. Some lots of substrate

fiber required a temperature of 1800 0C to clean it while other lots were pitted

after cleaning at this temperature.

The technique that evolved from the experimentation was to clean the substrate

fiber at some temperature and fiber velocity, observe the surface of the cleaned

fiber with a light microscope, and empirically adjust the parameters until observa-

tion with a light microscope showed long sections of the end of the spool to be clean

and smooth. The process was standardized to the extent that the fiber velocity was

generally set at 0.55 cm/sec (65 ft/hr) while the fiber temperature was changed. The

temperatures required to produce clean substrate were generally between 1700 and 18000C.

If, after cleaning a spool of fiber at a temperature determined as described above,

the carbon-boron deposition process indicated that the entire length of the spool

had not been thoroughly cleaned, the spool was discarded and a new spool was cleaned.

The experimentation also showed that, with a BCl3 , CH4 and H2 gas systems, the

carbon-boron composition in the deposited alloy was dependent upon the CH4 to BC1 3
ratio; as this ratio decreased, the boron coating of the alloy increased. However,

it was found that H2 could prevent methane decomposition and might be more important

in controlling the monofilament composition. That is, if the CH4 to H2 ratio was

decreased the boron content of the alloy increased.

Intuitively, one would expect that the highest tensile strength monofilament

would be achieved with a carbon-boron alloy with the highest w/o of B. This

concept was verified when monofilament was produced containing 75 w/o B. The aver-

age tensile strength of this monofilament was 304 KN/cm 2 (440 ksi), its modulus was

33 x 106 N/cm2 (49 x 106 psi), and its density was 2.226 g/cc. However, considerable

difficulty was encountered in depositing this alloy because of reactions with

impurities inherent in the substrate fiber.

As a consequence, a gas composition was selected (CH4 :BC1 3 and CH4:H 2 = 2.34:1)

from the previous study (Ref. 7) which gave a filament with 66 w/o B and had an average

modulus of 27 x 106 N/cm2 (39 x 106 ksi) and a density of 2.079 g/cc.
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It was found with this gas composition, that there was a tendency for increased

tensile strength for the monofilament with increased deposition temperature over a
limited range of temperatures. The composition of the carbon-boron alloy did not

change within this range of temperatures studied but if the deposition temperature
exceeded the upper limit, the deposit had a tendency to form rings of varying carbon-

boron composition.

The initial experimentation conducted under this contract - the Latin Square
Studies, with a DC reactor - showed the same tendency for increased tensile strength
for the monofilament with increased deposition temperature, Fig. 9, but the tensile

strength could not be optimized because various combinations of parameters produced
ring formation within the monofilament.

Emperically, with this gas composition, whenever the monofilament deposition

temperature exceeds approximately 12000 C, ring formation becomes apparent. It is

reasonable to assume that the rings of different composition are associated with

the decomposition of CH4 . At the higher temperatures, the decomposition is at its

maximum and a high carbon content alloy is deposited. As the carbon content of the

gas is depleted by deposition and the H2 content is increased by decomposition of
the CH4 , an alloy containing less carbon is deposited on the substrate. When the
deposition temperature is excessively high, this process can repeat itself forming
multiple rings of varying composition. These multiple ranges were noted in mono-
filament deposited at approximately 12500C and are shown in Fig. 21. Included in
Fig. 21 are the chemical compositions of the various rings. The monofilament shown
in Fig. 21 was produced in the early experimentation under Contract CR-121229 (Ref. 7)
and was reported therein.

Because the deposition temperature is the parameter that has the strongest
effect on the diameter of the monofilament, see Figs. 6, 7 and 8, high tempera-
tures are required to obtain high deposition rates. A uniform, high deposition
temperature would allow the production of monofilament with reasonable diameters at
faster substrate velocities, and would eliminate the tendency for ring formation.

The attempts to produce a uniform monofilament temperature within the reactor
were, for the most part, successful. Note Tables V and VI, the results of the
experimentation with a normal tapered reactor. The monofilament produced in this
reactor in runs NC 43 and NC 48A have a much higher average tensile strength than
would normally be expected at their deposition temperatures, and the diameters are
also larger than would be expected. This same general trend of higher strengths
and larger diameters was exhibited in the monofilament produced in the side port
and inverted side port reactors, Tables VIII, IX, X and XI. Although the results
were extremely encouraging, there was not enough time to pursue these experiments
further.

The experiments designed to produce a strong outer coating on the surface of
the monofilament were not as successful as those designed to produce a uniform
temperature profile. As stated, the attempts to control the carbon-boron alloy
by injecting gases with different compositions disrupted the temperature profile
so much that the monofilament produced had poor tensile properties.
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The results of the experiments in which H2 was injected into the lower one/third

of the reactor were very interesting, Tables XII and XIII. The chemical composition

of monofilament produced in Run Nos. NC-51A, 52, 52B, 53, 53A and 54B was measuredata
site adjacent to the substrate fiber and at a site adjacent to the outer surface. The

w/o of B within a monofilament was essentially identical at both locations and

varied in the series of experiments from 75 to 79 w/o of B while a composition of

66 w/o of B would be expected from the initial gas composition. It would appear

that the introduction of H2 into the lower one-third of the reactor changed the

deposition process throughout the length of the reactor - the injected H2 produced

the same reselts as a gas composition with a high H2 content.

In spite of the equipmnent difficulties experienced with the RF reactor, some

excellent monofilament was produced. Note Tables XXII and XXIII. Two gas composi-

tions were used to compare the composition of the alloy produced in the RF reactor

with that produced in a DC reactor. The chemical composition of monofilament

produced in Run Nos. NC-82 and 84 - CH4:H2 = 1.0:1.2 - and Run No. NC-86 - CH4:H2
2.34:1.0 were determined by electron microprobe analysis and are shown in Table

XXIX. These analyses agree with the analysis of monofilaments produced in a DC

reactor using the same gas ratios.

Monofilament produced in Run Nos. NC-82 and 84 have radically different average

tensile strengths, 276 KN/cm2 for NC-82 and 153 KN/cm2 for NC-84. The difference
in strength can be attributed to the ring formation that developed in the mono-
filament produced in NC-84. See Fig. 22. The ring was not thick enough to be
accurately analyzed with an electron microprobe and the analysis stated was conducted
on the remainder of the monofilament.

The tensile data for monofilament produced in Run No. NC-97 (Table XXI) and Run

No. NC-102 (Table XXIII) are typical strength values of monofilament produced from an

uncleaned substrate versus a cleaned substrate. Although the total gas flow was dif-

ferent for the two runs, all previous experimentation had shown no tendency for a

change in tensile strength with a change in total gas flow.

The experiments conducted to investigate the effects of deposition temperature
on the tensile strength of the monofilament - Tables XXII and XXIII - are revealing.
With the exception of Run Nos. 111 and 112, the experiments were run under stable
operating conditions. No strong tendency for an increase in tensile strength with
increase in deposition temperature over the range of ll500C to 12000 C was apparent

It is not known whether independence of deposition temperature would be found for
monofilament produced in a DC reactor having a uniform temperature profile.

Monofilament produced in the RF reactor was used to determine the high tempera-
ture tensile properties and the tensile strength of the monofilament after exposure
to molten aluminumn.

The decrease in the strength of the monofilament at 50000 in argon and air

from the room temperature strength was 40% for Run No. NC-97 and NC-99. As stated,
the gas composition used to produce monofilament for both of these runs -

CH4:H2 = 1.0:1.2 - yields approximately 77 w/o B in the carbon-boron alloy.
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The decrease in the strength of the monofilament at 5000C in argon and air

from the room temperature strength was 26% for the monofilament produced in Run

No. NC-103. The gas composition used in Run No. NC-103 (CH4:H 2 = 2.34:1.0) yields

66 w/o B. It would appear that the monofilament with the lower B content

retains its strength better at 500*C.

The final experimentation completed in the contract period, the tensile strength

of the monofilament after extraction from an aluminum composite, showed that the

strength of the monofilament is not degraded by molten aluminum.

CONCLUSIONS

Based upon the results obtained during this contract, the following conclusions

were drawn:

1. High tensile strength and high modulus carbon-based monofilament can be chemically

vapor deposited onto a carbon substrate fiber from a BC13, CH4 and H2 gas system.

With no precoat on the substrate fiber, the tensile strength of the monofilament

depends upon the condition of the substrate fiber. Tensile strengths with the least

amount of scatter were attained when the substrate fiber had been precleaned in

chlorine.

2. Deposition rate is dependent upon deposition temperature, the faster rates

occurring at higher temperatures. However, for a fixed gas composition, there is an

upper temperature limit for deposition that if exceeded the composition of the mono-

filament separates into zones of varying composition.

3. Monofilament produced in either a DC or an RF reactor, from a fixed gas

composition, has the same chemical composition, and that composition can be controlled

by changing the CH4 :H2 ratio.

4. The decrease in tensile strength of monofilament at 5000c is greater for the

monofilament with the higher w/o of B.

5. The tensile strength of monofilament containing 66 w/o of B in the carbon-boron

alloy is unchanged after exposure to molten aluminum.
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TABLE I

Electron Microprobe Chemical Analysis of Great Lakes Carbon Co.

Substrate Fiber.

Lot No. Package No. Cleaning Temp. Draw Speed Elements Detected by Spectral Beam Analysis

cm/sec ft/hr Major Minor Trace

1142 1 As Received (No Cleaning) S

1142 1 18000C 0.68 80 S

1142 1 180000C 0.594 70 S Si K,Ca

1142 1 1800oo 0.51 60 S

1117 3 As Received (No Cleaning) K SC1

1117 3 180000 .594 Si K,Ca S*

* Less than major classification because electron beam does not fully

penetrate outgrowth.



TABLE II-A

Individual Tensile Tests for Total Gas Flow of 600 cc/min
Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot #1142. Package #3 cleaned in an
R.F. reactor in chlorine at 18000C with a Draw Speed of 0.68 cm/sec (80 ft/hr)

Run No. NC-1 NC-5 NC-9 NC-13
Temp. 1150 0C 1170 0C 11900C 12100C
Substrate Velocity .169 20 .423 50 .254 30 .338 40
(cm/sec) (ft/hr)

Dia 66 2.6 68.6 2.7 89 3.5 104 4.1
(4) (mils)
UTS
K N/cm 2  KSi 120 174 108 157 94 137 143 208

130 188 118 172 117 170 146 211
149 217 132 192 127 185 151 219
152 220 150 217 150 218 157 227
152 220 156 227 163 236 160 233
227 156 186 264 163 236 165 239
163 236 195 284 171 248 182 264
165 240 210 305 176 256 185 268
170 247 213 310 198 287 187 271
198 287 247 358 209 304 192 278

Avg UTS 156 226 171 248 157 228 167 242
(K N/cm2 ) (Ksi)

Std. Dev. 26 31 55 66 43 52 22 26
(K N/cm2 ) (Ksi)
Coeff. Var. (%) 13.8 26.6 22.8 10.9



TABLE II-B

Individual Tensile Tests for Total Gas Flow of 700 cc/min

Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot #1142. Package #3 cleaned in an
R.F. reactor in chlorine at 180000 with a Draw Speed of .68 cm/sec (80 ft/hr)

Run No. NC-2 NC-6 NC-10 NC-14
Temp 115000 11700C 1190Co 12100C
Substrate Velocity .338 40 .254 30 .423 50 .169 20
(c/sec) (ft/hr)
Dia. 66 2.6 81.5 3.2 81.5 3.2 107 4.2
(4) (mils)
US 143 207 110 159 85 123 139 202
(K N/cm2 ) (Ksi) 149 217 167 243 132 192 144 209

160 231 189 275 133 193 152 221
161 234 219 318 138 200 165 239
162 235 220 319 144 210 176 255
182 264 230 334 194 282 188 273
197 285 235 341 197 286 189 274
197 285 237 344 214 311 209 304
211 306 239 347 216 314 219 318
212 308 254 368 217 315 249 361

Avg. UrS 177 257 210 305 167 242 183 266
(K N/cm2 ) (Ksi)
Std. Dev. 31 37 52 63 56 67 42 51
K N/cm Ksi
Coeff. Var. ($) 14.5 20.7 27.7 19.2



TABLE II-C

Individual Tensile Tests for Total Gas Flow of 800 cc/min

Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot #1142. Package #3 cleaned in an
R.F. reactor in chlorine at 18000C with a Draw Speed of .68 cm/sec (80 ft/hr)

Run No. NC-3 NC-7 NC-11 NC-15
Temp. 1150 ° C 1170 0C 11900C 12100C
Substrate Velocity 0.423 50 0.169 20 0.338 40 0.254 30
(cm/sec) (ft/hr)
Dia. 66 2.6 89 3.5 91.5 3.6 104 4.1
(A) (mils)
UTS 147 214 107 155 99 144 54 78
(K N/cm 2) (Ksi) 158 230 145 210 140 204 74 108

163 237 164 238 179 260 104 152
186 269 173 251 180 261 118 171
187 271 186 270 183 265 152 220
195 282 187 271 190 275 183 265
201 292 192 279 204 296 183 265
214 310 195 283 204 296 189 275
214 310 224 325 216 313 195 283
216 314 248 360 224 326 208 302

Avg UTS 188 273 182 264 182 264 146 211
(K N/cm 2) (Ksi)
Std. Dev. 30 36 47 57 45 54 66 80
(K N/cm 2) (Ksi)
Coeff. Var. (%) 13.2 21.5 20.6 37.6



TABLE II-D

Individual Tensile Tests for Total Gas Flow

of 900 cc/min. Gage Length = 2.54 cm.

Substrate. Great Lakes Carbon Lot # 1142 Package #3 Cleaned in an

R.F. Reactor in Chlorine at 1800 0C With a Draw Speed of .68 cm/sec (80 ft/hr)

Run No. NC-4 NC-8 NC-12 NC-16

Temp. 11500 11700C 1190 0 C 12100C

Substrate Velocity 0.254 30 0.338 40 0.169 20 0.423 50

(cm/sec) (ft/hr)
Dia 76.2 3.0 76.2 3.0 101.5 4.0 92.7 3.65

(4) (mils)
UTS 84 122 93 134 82 119 54 79

(KN/cm2 ) (Ksi) 89 129 110 159 154 224 188 272

oo0 145 179 260 155 225 197 286

128 185 181 263 176 255 204 296

133 192 181 263 193 280 204 296

134 194 190 276 197 286 209 304

137 199 190 276 221 321 215 313

137 199 201 292 225 327 217 314

168 244 206 299 227 329 218 317
184 267 208 301 235 341 218 317

Avg. UTS 129 188 174 252 187 270 192 279

(KN/cm2 ) (Ksi)

Std. Dev.

(KN/cm2 ) (Ksi) 39 46 48 58 57 68 60 72

Coeff. Vor. () 24.7 23.0 25.2 25.8



TABLE III-A

Individual Tensile Tests for Total Gas Flow

of 600 cc/min. Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot #1117 Package #3 Cleaned in an

R.F. Reactor in Chlorine at 18000C With a Draw Speed of .594 cm/sec (70 ft/hr)

Run No. NC-21 NC-22 NC-23 NC-24

Temp. 11500 11700C 11900C 12100 C

Substrate Velocity .169 20 .254 30 .338 40 .423 50

(cm/sec) (ft/hr)
Dia 71 2.8 75 2.95 83.8 3.3 89 3.5

(p.) (mils)
UTS 67 97 184 266 60 88 62 90

(KN/cm2 ) (Ksi) 74 107 207 300 168 243 64 94
81 117 210 305 168 243 72 104

81 117 218 316 174 253 147 213
82 119 228 331 210 304 155 225

106 154 234 340 228 331 172 249
112 162 237 344 232 337 172 249

123 179 245 356 239 347 180 262
129 187 270 392 243 353 198 288
168 244 272 395 250 363 202 293

Avg. UTS 102 148 231 334 197 286 142 207

(KN/cm2 ) (Ksi)

Std. Dev. 38 46 34 40o 70 84 67 80

(KN/cm2 ) (Ksi)

Coeff. Vor. (%) 30.9 12.1 29.3 38.8



TABLE III-B

Individual Tensile Tests for Total Gas Flow

of 700 cc/min. Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot # 1117 Package #3 Cleaned in an
R.F. Reactor in Chlorine at 1800 0C With a Draw Speed of .594 cm/sec (70 ft/hr)

Run No. NC-27 NC-28 NC-29 NC-30
Temp. 1150 0C 11700C 11900C 12100 C
Substrate Velocity .254 30 .169 20 .423 50 .338 40
( cm/sec) (ft/hr)

Dia 76.2 3.0 114.3 4.5 91.5 3.6 96.5 3.8

(l) (mils)
UTS 110 159 72 104 54 79 118 172

(KN/cm2 ) (Ksi) 115 167 91 132 68 98 187 272
122 177 93 135 102 147 194 282
127 184 124 179 149 216 204 295
136 198 137 198 152 221 207 300
144 209 158 230 169 246 207 300
173 251 163 236 173 251 210 304

195 283 165 239 176 255 211 307
227 329 180 261 179 260 216 313
235 341 199 289 190 275 222 322

Avg. UTS 158 230 138 200 141 205 198 287
(KN/cm2 ) (Ksi)

Std. Dev. 56 67 51 61 59 71 36 43
(KN/cm2 )  (Ksi)

Coeff. Var. (1) 29.3 30.6 34.6 14.9



TABLE III-C

Individual Tensile Tests for Total Gas Flow of 800 cc/min
Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot # 1117 Package # 3 Cleaned in an R.F.
Reactor in Chlorine at 1800 0C With a Driaw Speed of .594 cm/sec (70ft/hr)

Run No. NC-31 NC-32 NC-33 NC-34
Temp. 1150°C 11700C 11900 C 12100 C

Substrate Velocity 0.338 40 0.423 50 0.169 20 0.254 30
(cm/sec) (ft/hr)

Dia 61 2.4 66 2.6 101.5 4.0 99 3.9

(p) (mils)
LUS 122 177 1ll 160 175 255 118 172

(KN/cm ) (Ksi) 133 194 137 198 186 270 124 180

141 205 143 208 187 272 157 228

141 205 163 236 191 277 168 244

164 238 163 321 192 278 186 269

171 248 221 321 192 278 186 269

175 254 228 330 200 290 209 303
191 277 234 340 203 294 213 310
206 299 239 347 211 306 216 314
210 304 239 347 214 310 226 328

Avg U1S 165 240 188 272 195 283 180 261

(KN/cm2 ) (Ksi)

Std. Dev. 37 44 60 72 14 17 46 55
(KN/cm ) (Ksi)

Coeff. Var. (%) 18.5 26.4 6.0 21.1



TABLE III-D

Individual Tensile Tests for Total Gas Flow of 900 cc/min

Gage Length = 2.54 cm

Substrate. Great Lakes Carbon Lot # 1117 Package # 3 Cleaned in an R.F.

Reactor in Chlorine at 18000C With a Draw Speed of .594 cm/sec (70 ft/hr)

Run No. NC-35 NC-36 NC-37 NC-38

Temp. 11500 C 11700C 11900C 12100C

Substrate Velocity 0.423 50 0.338 40 0.254 30 0.169 20

(cm/sec) (ft/hr)
Dia 80 3.25 89 3.5 78.7 3.2 113 4.45

() (mils)
UTS 90 130 125 182 105 153 95 138

(KN/cm2 ) Ksi) 120 175 147 213 116 168 132 191

123 178 150 218 137 199 146 212

145 211 161 234 141 205 160 232

149 217 172 249 161 234 171 248

152 220 179 260 170 246 186 270
162 235 186 270 211 306 197 286

164 239 186 270 223 323 235 341

174 253 218 317 238 346 235 341

187 271 229 333 266 386 241 350

Avg UTS 147 213 175 255 177 257 180 261

(KN/cm2 ) (Ksi)

Std. Dev. 35 42 38 46 66 79 59 71

(KN/cm2 ) (Ksi)

Coeff. Var. (%) 19.6 18.2 30.9 27.1



TABLE IV

Monofilament D.C. Reactor Temperature Profiles

Run Nos. 29 30 31 32 33 34 35 36 37 38

Total Gas Flow cc/min 700 800 900

Temperature (O c )

Top electrode 1380 1315 990 1045 1130 1210 1190 1170 1190 1190

Std. Measuring pt. 1185 1195 1150 1170 1190 1210 1150 1170 1190 1210

Bottom Electrode 1060 1065 1015 1035 1080 1080 1060 1100 1055 1075

N)



TABLE V

Temperature Profiles and Tensile Strength Data of Monofilament

Produced in a Normal Tapered Reactor

Substrate Velocity 0.254 cm/sec (30 ft/hr)

UTS Coefficient

Run No. Total Gas Flow Temperature (oC) Dia. (KN/cm2 ) (Ksi) of Variation

(cc/min) T C B () (mils) High Low Avg. (%)

NC 41 600 1120 1155 1100 74 2.9 188 272 58 85 118 171 29.3

NC 42* 600 1190 1140 1125 84 3.3 216 313 79 115 160 233 27.9

NC 43 700 1100 1115 1100 76 3.0 203 294 127 180 169 245 12.1

NC 48A 800 1135 1120 1090 102 4.3 237 344 157 227 199 289 12.7

NC 48B 900 1135 1142 1085 91 3.6 193 280 63 91 124 180 34.9

NC 48C 1000 1120 1135 1100 90 3.55 207 301 90 131 143 208 27.1

* Substrate velocity was 0.338 cm/sec (40 ft/hr)



TABLE VI

Individual Tensile Tests for Runs NC 43 and NC 48A

Run No. NC 43 NC 48 A

UTS

KN/cm2 (Ksi) 127 180 157 227

151 219 167 242

158 229 184 267

166 240 197 286

175 255 201 291

175 255 202 293

177 257 206 300

177 257 206 300

180 262 233 337

203 294 237 344



TABLE VII

Temperature Profiles and Tensile Strength Data of Monofilament
Produced in an Inverted Tapered Reactor

Substrate Velocity 0.254 cm/sec (30 ft/hr)

UTS Coefficient

Run No. Total Gas Flow Temperature 'C Dia. (KN/cm2 ) (Ksi) of Variation

(cc/min) T C B (4) (mils) High Low Avg. (%)

NC 44 700 1120 1155 1130 105 4.15 226 327 64 92 126 183 38.1

NC 45 800 1185 1155 1115 109 4.3 260 377 72 105 139 202 53.9

NC 46 900 1160 1155 1100 74 2.9 239 347 58 84 145 211 45.7



TABLE VIII

Temperature Profiles and Individual Tensile Strength Data of Monofilament Produced in a
Normal Side Port Reactor

Substrate Velocity 0.254 cm/sec (30 ft/hr)

Run No. Total Gas Flow Side Port Gas Temperature (oC) Dia UTS Coefficient

cc/min of Variation

T C S B P mils KN/cm 2  Ksi (%)

NC57 800 100 cc/min N2 1130 1165 1170 1085 84 33 221 320 12.7

272 395

274 398

302 438

Avg. uS 267 388
KN/cm Ksi

(Ao



TABLE IX

Temperature Profiles and Tensile Strength Data of Monofilament

Produced in an Inverted Side Port Reaction

Substrate Velocity 0.254 cm/sec (30 ft/hr)

Run No. Total Gas Side Port Temperature °C Dia UTS Coefficient

Flow Gas T C S B P mils KN/cm2  Ksi of Variation

(cc/min) 
High Low Avg. (%)

NC 58 800 100 cc/min N2  1130 1155 1155 1140 84 3.3 229 332 114 165 187 271 17.6

NC 59 800 100 cc/min N2  1170 1160 1160 1145 91 3.6 280 407 130 188 227 330 18.9

NC 60 800 100 cc/min Ar 1060 1115 1135 1130 69 2.7 250 362 117 170 187 271 19.6

NC 61 800 100 cc/min Ar 1145 1165 1155 1150 91 3.6 279 405 120 174 203 294 32.0



TABLE X

Individual Tensile Tests for Runs NC 58, 59, 60 and 61

RUN NO. NC 58 NC 59 NC 60 NC 61

UTS

KN/cm2  Ksi 114 165 130 188 117 170 120 174

154 223 205 297 150 218 152 221

179 260 218 317 171 249 173 251

181 263 220 319 184 266 208 302

193 279 220 319 187 271 208 302

197 286 229 333 190 275 213 309

199 289 235 341 190 275 218 317

209 304 254 368 211 306 222 322

213 309 279 405 220 319 234 339

229 332 280 407 250 362 279 405

w



Table XI-A

Individual Tensile Tests of Monofilament

Produced in an Inverted Side Port Reactor

Substrate - Great Lakes Carbon Co. Lot #1117, Package #4
Cleaned in Chlorine at 17000 C

Gas Ratio - CH4:H 2 = 2.34:1

Total Flow Reactant Gas = 800 cc/min

Gage Length = 2.54 cm

Run No. NC113 NC114 NC115 NC1l6 NC117 NC118 NC119

Avg. Deposition Temp (oC)

At Top Electrode 1165 1152 1187 1190 1195 1180 1190

At Side Entry Port 1145 1172 1180 1170 1177 1195 1190

At Bottom Electrode 1085 1152 1155 1155 1162 1172 1155

Side Port Gas Ar N2  N 2  N 2  N 2  N 2  N2

Flow Rate (cc/min) 100 100 200 200 200 200 200

Substrate Velocity (cm/sec) 0.296 0.296 0.296 0.296 0.296 0.296 0.296

Diameter (u) 76.3 80 85 73.6 73.6 73.6 73.6

UTS (KN/cm2 ) 99 150 170 99 94 104 151

132 150 212 99 179 159 154

201 175 223 175 188 171 156

207 217 224 193 200 173 159

224 234 235 203 202 182 170

236 239 242 214 208 190 172

253 239 244 224 211 212 177

271 245 246 240 211 227 21

277 255 250 243 211 248 219

280 267 252 255 235 255 219

Avg UTS (KU/cm2 ) 218 217 230 195 194 192 179

Std. Dev. (K/cm2 ) 74 52 30 67 46 55 33

Coeff. of Var. (%) 28 20 11 29 24 24 15
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Table XI -B

Individual Tensile Tests of Monofilament

Produced in an Inverted Side Port Reactor

Substrate - Great Lakes Carbon Co. Lot #1117, Package #4
Cleaned in Chlorine at 17000 C

Gas Ratio - CH:H 2 = 2.34:1

Total Flow Reactant Gas = 800 cc/min

Gage Length = 1 inch

Run No. NCll13 NCll4 NCll5 NC116 NCll7 NC118 NCl19

Avg. Deposition Temp (oC)

At Top Electrode 1165 1152 1187 1190 1195 1180 1190

At Side Entry Port 1145 1172 1180 1170 1177 1195 1190

At Bottom Electrode 1085 1152 1155 1155 1162 1172 1155

Side Port Gas Ar N2 N2  N2 N2 N2 N2

Flow Rate (cc/min) 100 100 200 200 200 200 200

Substrate Velocity (ft/hr.) 35 35 35 35 35 35 35

Diameter (mils) 3.0 3.15 3.35 2.9 2.9 2.9 2.9

UTS (ksi) 144 218 246 144 136 151 219
191 218 308 144 260 231 224
291 254 323 254 272 248 227
300 315 326 280 290 251 231
325 340 341 295 293 265 247
342 347 352 310 303 275 250
368 347 355 325 306 307 257
393 356 357 348 306 330 310
402 370 363 352 306 360 318
406 388 366 371 340 371 318

Avg. UTS (ksi) 316 315 334 282 281 279 260

Std. Dev. (ksi) 89 62 36 81 55 66 4o

Coeff. of Var. () 28 20 11 29 20 24 15
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TABLE XII

Temperature Profiles and Tensile Strength Data of Monofilament

Produced in a Normal Side Port Reactor

Gas injected into side port was H2 .Substrate velocity 0.254 cm/sec (30ft/hr)

Run No. Total Gas Side Port Temperature Dia. UTS Coefficient

Flow cc/min Gas cc/min T C S B p mils KN/cm2 Ksi of Variation

High Low Avg. (%)

NC 51 700 0 1150 1170 1130 1085 76 3.0 261 379 103 150 192 278 26.4

NC 51A 700 100 1150 1170 1100 1065 70 2.75 206 300 52 76 139 201 36.4

NC 52A 800 0 1140 1170 1130 1105 83 3.25 235 341 93 135 181 263 26.8

NC 52 800 100 1148 1170 1105 1100 71 2.8 206 300 45 65 124 180 50.7

NC 52B 800 200 1175 1170 1035 1035 67 2.65 215 312 19 27 79 114 83.6

NC 53B 900 0 1180 1180 1155 1120 88 3.45 241 349 82 119 158 229 27.3

NC 53A 900 100 1170 1180 1095 1080 76 3.0 232 337 15 21 114 165 72.2

NC 53 900 200 1170 1170 1020 1030 69 2.7 301 436 24 35 207 300 43.8

NC 54 1000 0 1155 1180 1140 1100 85 3.35 205 297 53 77 141 204 41.6

NC 54A 1000 100 1175 1170 1100 1080 80 3.15 153 222 9 13 72 104 54.1

NC 54B 1000 200 1175 1180 1040 1030 72 2.85 246 357 92 133 179 260 25.2



TABLE XIII

Individual Tensile Tests for Run NC 53

UTS
KN/cm2 Ksi 24 35

63 91

198 288

220 319

245 356

249 361

253 366

259 375

259 375

300 436

\10
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Table XIV

Individual Tensile Tests of Monofilament Produced in a Side Port DC Reactor

Run No. 71 72

Dia

(1) (mils) 77.5 3.1 75 3.0

UTS

(kN/cm2 )(ksi) 28 41 47 69

64 93 64 94
101 146 64 94

105 152 69 100

109 158 77 112

121 175 86 125

141 204 112 162

153 222 168 243
169 245 180 262
217 315 241 349

Avg. UTS

(kN/cm2 )(ksi) 121 175 111 161

Std. Dev.

(kN/cm2 )(ksi) 64 77 77 93

Coeff. of Var. (%) 44 58



Table XV-A

Individual Tensile Tests of Monofilament

Produced in a Side Exit Port DC Reactor
Substrate - Great Lakes Carbon Co. Lot #1190, Package #2

Cleaned in Chlorine at 17000C

Gage Length = 2.54 cm

Run No. NC 110
Top Above Below Bottom

Electrode Side Port Side Port Electrode

Deposition Temp. (oC) 1172 1095 1115 1095

Substrate Vel. (cm/sec) 0.296

Diameter (A) 70.0

UTS (KN/cm2 ) 46
58
70

157
201

Avg. UTS (KN/.cm 2 ) 106

Std. Dev. (KN/cm2 ) 82

Coeff. of Var. (%) 64
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Table XV-B

Individual Tensile Tests of Monofilament

Produced in a Side Exit Port DC Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2

Cleaned in Chlorine at 170000

Gage Length = 1 inch

Run No. NC 110

Top Above Below Bottom

Electrode Side Port Side Port Electrode

Deposition Temp. (oC) 1172 1095 1115 1095

Substrate Vel. (ft/min) 35

Diameter (mile) 2.75

UTS (ksi) 67
84

101
227
291

Avg. UTS (ksi) 154

Std. Dev. (ksi) 99

Coeff. of Var. (%) 64
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Table XVI

Individual Tensile Tests of Monofilament Produced in an RF Reactor

Run No. 62 63

Dia

(p) (mils) 80 3.2 107.5 4.3

UTS

(kN/cm2 )(ksi) 90 131 31 45
91 132 39 56
93 135 39 57
99 144 57 83

112 162 60 88
119 172 61 88
144 209 63 91
175 255 81 117
178 259 96 140
185 269 115 167

Avg. UTS

(kN/cm2 )(ksi) 129 187 64 93

Std. Dev.
(kN/cm2 )(ksi) 47 56 32 39

Coeff. of Var. (%) 30 41



Table XVII

Individual Tensile Tests of Monofilament Produced in an RF Reactor

Run No. 64 66

Dia 82.5 3.3 57.5 2.3

(p) (mils)

UTS 47 69 159 231

(kN/cm2 )(ksi) 61 89 185 268

79 114 196 289

79 114 205 297

88 128 241 350

93 135 241 350

101 147 247 358

102 148 259 375

110 159 281 408

122 177 326 474

Avg. UTS

(kN/cm2 )(ksi) 88 128 234 339

Std. Dev.

(kN/cm2 )(ksi) 27 33 59 72

Coeff. of Var. (%) 25 21



Table VXIII-A

Individual Tensile Tests of Monofilament Produced in an R.F. Reactor
Substrate - Great Lakes Carbon Co. Lot #1190, Package #1 in As Received Condition

Gage Length = 2.54 cm

Run No. 78 75 74 77 73 76

Deposition Temp. 1160 1170 1170 1180 1180 1200
(oc)

Substrate Velocity 0.296 0.424 0.508 0.424 0.508 0.508
(cm/sec)

Diameter 84.0-89.0 71.0 54.5-63.5 63.5-70.0 70.0 75.0

UTS 135 157 142 168 139 89
(kN/-cm 2 ) 165 179 167 192 180 91

171 215 172 203 209 94

173 224 185 210 209 121

197 229 208 220 255 126
205 237 209 232 255 133
216 237 214 247 261 146
226 302 221 263 273 149
228 311 232 267 278 151
240 353 232 289 354 156

Avg. UTS 196 244 198 229 241 125
(kN/cm2 )

Std. Dev. 40 73 36 45 72 32

(kN/cm2 )
Coeff. of Var. 17 25 15 16 25 21

(%)

h5



Table XVIII-B

Individual Tensile Tests of Monofilament Produced in an R.F. Reactor
Substrate - Great Lakes Carbon Co. TLot #1190 Pacn ge #1 in As ved Condition

Gage Length = 1 inch

Run No. 78 75 74 77 73 76

Deposition Temp. 1160 1170 1170 1180 1180 1200

(oc)
Substrate Velocity 35 50 60 50 60 60

(ft/hr)
Diameter 3.3-3.5 2.8 2.15-2.5 2.5-2.75 2.75 2.95

(mils)
UTS 196 227 207 244 202 129

(ksi) 240 260 242 279 261 132
248 312 250 295 303 136
251 325 268 305 303 176
286 333 302 320 370 183

298 344 303 337 370 193
314 344 311 359 379 212

327 438 321 382 396 217

331 451 336 388 404 220
348 513 337 420 513 227

Avg. UTS 284 355 288 333 350 182

(ksi)

Std. Dev. 47 88 44 55 87 38

(ksi)

Coeff. of Var. 17 25 15 16 25 21

(%)
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Table XIX-A

Individual Tensile Tests of Monofilament Produced in an R.F. Reactor
Substrate - Great Lakes Carbon Co. Lot #1190, Package #1 Cleaned in Chlorine at 17000 C

Gage Length = 2.54 em

Run No. 81 83 80 79 82 84

Deposition Temp. 1150 1150 1180 1180 1200 1200
(oC)

Substrate Velocity 0.296 0.424 0.296 0.424 0.296 0.424
(cm/sec)

Diameter 78.7-105.5 70.0-75.0 91.5-101.5 71.0-101.5 81.5-90.2 72.4-81.5

UTS 78 185 173 80 235 102
(kN/cm2) 91 200 176 90 248 130

173 204 201 159 262 136
189 218 232 160 270 146
199 227 233 175 275 158
206 233 247 219 277 158
230 238 257 219 282 162
239 238 257 219 284 171
243 248 304 233 285 183
278 267 325 244 345 187

Avg. UTS 192 226 240 180 276 153
(kN/cm2 )

Std. Dev. 78 30 60 70 35 31
( kN/cm2)

Coeff. of Var. 34 11 21 32 11 17
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Table XIX-B

Individual Tensile Tests of Monofilament Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #1 Cleaned in Chlorine at 17000 C

Cag Length = 1 ilch

Run No. 81 83 80 79 82 84

Deposition Temp. 1150 1150 1180 1180 1200 1200
(Oc)

Substrate Velocity 35 50 35 50 35 50
(ft/hr)

Diameter 3.1-4.55 2.85-2.95 3.6-4.0 2.8-4.0 3.4-3.55 2.85-3.4
(mils)

UTS 113 268 251 116 341 149
(ksi) 132 290 255 130 360 188

252 296 291 230 380 198
267 317 336 232 392 212
289 329 338 253 399 209
300 339 359 318 402 229
334 345 373 318 410 235
347 345 373 318 413 248
353 361 442 338 413 266
404 388 476 354 501 272

Avg. UTS 279 328 349 261 401 222
(ksi)

Std. Dev. 94 36 72 83 42 37
(ksi)

Coeff. of Var. 34 11 21 32 11 17
(%)
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Table XX-A

Individual Tensile Tests of Monofilament Produced in an R.F. Reactor
Substrate - Great Lakes Carbon Co. Lot #1190, Package #1 Cleaned in Chlorine @ 17000C

Gage Length = 2.54 cm

Run No. 85 86

Deposition Temp. 1150 1180

(oc)
Substrate Velocity 0.424 0.424

(cm/sec)

Diameter 73.6-77.5 89
(p.)

UTS 109 136

(kN/cm2 ) 144 138
168 148
172 150
180 154
181 158
182 161
183 170
187 172
197 175

Avg. UTS 170 156
(kN/cm2)

Std. Dev. 31 17
(kN/cm2)

Coeff. of Var. 15 9
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Table XX-B

Individual Tensile Tests of Monofilament Produced in an R.F. Reactor
Substrate - Great Lakes Carbon Co. Lot #1190, Package #1 Cleaned in Chinrine @ 17000C

Gage Length = 1 inch

Run No. 85 86

Deposition Temp, 1150 1180
(oc)

Substrate Velocity 50 50
(ft/hr)

Diameter 2.9-3.05 3.5
(mils)

UTS 158 198
(ksi) 209 200

243 214
250 218
262 223
263 229
265 234
266 247
271 249
286 255

Avg. UTS 247 227
(ksi)

Std. Dev. 37 20
(ksi.)

Coeff. of Var. 15 9
(%)
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Table XXI-A

Individual Tensile Tests of Monofilament
Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2

As Received Condition
Gas Ratio CH4:H 2 = 1.0:1.2

Total Gas Flow = 1700 cc/min

Gage Length = 2.54 cm

Run Nos. NC 97

Deposition Temp. (oC) 1200

Substrate Vel. (cm/sec) 0.296

Diameter (0) 68.5-71.0

UTS (KN/cm2 ) 123
142

145
156
185
192
201

219

235

237

Avg. UTS (KN/.cm 2 ) 184

Std. Dev. (KN/cm2 ) 49

Coeff. of Var. (%) 22.1
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Table XXI-B

Individual Tensile Tests of Monofilament

Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2
As Received Condition

Gas Ratio CH4:H 2 = 1.0:1.2

Total Gas Flow = 1700 cc/min

Gage Length = 1 inch

Run Nos. NC 97

Deposition Temp. (OC) 1200

Substrate Vel. (ft/min) 35

Diameter (mils) 2.7-2.8

UTS (ksi) 178

206
211

227
268

279
292
318
341
344

Avg. UTS (ksi) 267

Std. Dev. (ksi) 59

Coeff. of Var. (%) 22
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Table XXII-A

Individual Tensile Tests of Monofilament

Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2

Cleaned in Chlorine at 170000
Gas Ratio CH4:H 2 = 1.0:1.2

Total Gas Flow = 1700 cc/min

Gage Length = 2.54 cm.

Run Nos. NC 98 NC 99 NC 100 NC 104 NC 105 NC 112*

Deposition Temp. (oC) 1150 1180 1200 1200 1200 1190

Substrate Vel. (cm/sec) 0.296 0.296 0.296 0.296 0.296 0.296

Diameter (W2) 62.5 71.0 76.3-81.5 71.0-81.5 71.0-83.8 81.3-95.5

UTS (KN/cm 2 ) 183 166 172 187 138 121
186 183 244 209 183 127
227 224 244 216 187 164
241 226 246 225 201 180
249 249 250 229 203 189
260 249 256 231 233 205
293 259 286 237 254 220
304 280 292 311 254 231
315 304 314 338 257 234

326 311 321 405 259 236

Avg. UTS ( KN/cm?) 258 245 262 259 217 190

Std. Dev. (KN/cm2 ) 61 57 52 84 49 51

Coeff. of Var. (%) 20 19 17 27 19 22

*Substrate - Great Lakes Carbon Lot #1117, Package #4 Cleaned in Chlorine at 17000C
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Table XXII-B

Individual Tensile Tests of Monofilamen-
Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2
Cleaned in Chlorine at 17000C

Gas Ratio CH4:H 2 = 1.0:1.2

Total Gas Flow = 1700 cc/min

Gage Length = 1 inch

Run Nos. NC 98 NC 99 NC 100 NC 104 NC 105 NC 112*

Deposition Temp. (oC) 1150 1180 1200 1200 1200 1200

Substrate Vel. (ft/min) 35 35 35 35 35 35

Diameter (mils) 2.45 2.8 3.0-3.2 2.8-3.4 2.8-3.3 3.2-3.8

UTS (ksi) 265 240 249 271 201 175
270 266 354 303 265 185
329 325 354 313 271 238
350 328 357 327 292 261
361 362 362 333 295 275
378 362 371 336 338 297
425 377 415 344 368 319
442 406 424 452 368 335
457 442 456 490 374 340
473 451 466 589 376 342

Avg. UTS (ksi) 375 356 381 376 315 277

Std. Dev. (ksi) 74 69 63 100 59 62

Coeff. of Var. (%) 20 19 17 29 .19 22

*Substrate - Great Lakes Carbon Lot #1117, Package #4 Cleaned in Chlorine at 17000C
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Table XXIII-A

Individual Tensile Tests of Monofilament

Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2
Cleaned in Chlorine at 1700 0C

Gas Ratio CH4:H 2 = 2.34:1.0
Total Gas Flow = 1200 cc/min

Gage Length = 2.54 cm.

Run Nos. NC 101 NC 103 NC 102 NC 111 *

Deposition Temp. (oC) 1150 1180 1200 1190

Substrate Vel. (cm/sec) 0.296 0.296 0.296 0.296,

Diameter (4) 62.5-76.3 81.3-83.8 87.6-91.5 77.4-112

UTS (KN/cm2 ) 171 153 199 102

179 226 245 145
200 239 247 154
207 262 254 155
226 264 256 156
227 270 263 159
229 276 270 170
234 286 272 178
243 292 274 191
252 311 281 192

Avg. UTS (KN/.cm 2 ) 217 258 256 160

Std. Dev. (KN/cm2 ) 32 53 28 31

Coeff. of Var. (%) 12 17 9 16

*Substrate - Great Lakes Carbon Lot #1117, Package 4 Cleaned in chlorine at 17000 C
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Table XXIII-B

Individual Tensile Tests of Monofilament

Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2

Cleaned in Chlorine at 17000C
Gas Ratio CH4 :H2 = 2.34:1.0

Total Gas Flow = 1200 cc/min

Gage Length = 1 inch

Run Nos. NC 101 NC 103 NC 102 NC 111 *

Deposition Temp. (oC) 1150 1180 1200 1190

Substrate Vel. (ft/min) 35 35 35 35

Diameter (mils) 2.65-3.0 3.2-3.3 3.45-3.6 3.05-4.4

UTS (ksi) 249 222 289 148

260 327 355 211

290 347 359 224

300 381 369 225

328 384 372 226

330 397 382 231

332 400 392 246

339 415 395 258

353 423 397 278

366 451 407 279

Avg. UTS (ksi) 315 374 372 233

Std. Dev. (ksi) 40 64 34 38

Coeff. of Var. (%) 12 17 9 16

*Substrate - Great Laeks Carbon Lot #1117, Package 4 Cleaned in chlorine at 17000C
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Table XXIV-A

Individual Tensile Tests of Monofilament

Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2
Cleaned in Chlorine at 1700 0C

Gas Ratio CH4:H 2 = 1.0:1.2

Total Gas Flow = 1275 cc/min

Gage Length = 2.54 cm

Run Nos. NC 106 NC 107

Deposition Temp. (oC) 1180 1200

Substrate Vel. (cm/sec) 0.296 0.296

Diameter V-4) 77.4-80.0 82.8-117.0

UTS (KN/cm2 ) 141 9
151 29
219 43
229 80
239 88
240 110

241 129
247 143
247 149
280 145

Avg. UTS (KN/.cm 2 ) 223 93

Std. Dev. (KN/cm2 ) 53 63

Coeff. of Var. (%) 20 56
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Table XXIV-B

Individual Tensile Tests of Monofilament

Produced in an R.F. Reactor

Substrate - Great Lakes Carbon Co. Lot #1190, Package #2

Cleaned in Chlorine at 17000C
Gas Ratio CH4:H 2 = 1.0:1.2

Total Gas Flow = 1275 cc/min

Gage Length = 1 inch

Run Nos. NC 106 NC 107

Deposition Temp. (oC) 1180 1200

Substrate Vel. (ft/min) 35 35

Diameter (mils) 3.05-3.15 3.25-4.6

UTS (ksi) 205 13
219 42

318 63
333 116
346 128
348 159
350 187

359 207
359 216
407 219

Avg. UTS (ksi) 324 135

Std. Dev. (ksi) 63 76

Coeff. of Var. (%) 20 56
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Table XXV-A

Individual Tensile Tests of Monofilament

Measured in Air at Room Temperature, in Air at 5000C
and in Argon at 5000C

Run No. 97

Atmosphere Air Air Argon

Test Temperature RT 50000C 5000C

UTS (KN/cm2 ) 123 74 103
142 84 113

145 101 113

156 109 114
184 125 116

192 126 116
201 127 119

219 129 121
235 137 12.6

237 139

Avg. UTS (KN/cm2 ) 184 112 118

Std. Dev. (KN/cm2 )'  49 27 12

Coeff. of Var. (%) 22 20 8
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Table XXV-B

Individual Tensile Tests of Monofilament

Measured in Air at Ruom Temperature, in Air at 5000u

and in Argon at 50000C

Run No. 97

Atmosphere Air Air Argon

Test Temperature RT 5000C 500 0C

UTS (ksi) 178 107 149
206 122 163
211 146 163
227 158 166
268 182 168

279 183 168
292 185 173

318 187 176
341 198 184

344 202

Avg. UTS (ksi) 267 163 171

Std. Dev. (ksi) 59 32 14

Coeff. of Var. (%) 22 20 8
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Table XXVI-A

Individual Tensile Tests of Monofilament
Measured in Air at Room Temperature, in Air at 500 0C

and in Argon at 50000

Run No. 99

Atmosphere Air Air Argon

Test Temperature RT 50000 5000C

UTS (KN/cm2 ) 166 110 103
183 110 115
224 132 140
226 132 145
249 136 146
249 143 150
259 148 156
280 148 164
304 210 185
311 213 246

Avg. UTS (KN/cm2 ) 245 148 155

Std. Dev. (KN/cm2 ) 57 44 47

Coeff. of Var. (%) 19 24 25
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Table XXVI-B

Individual Tensile Tests of Monofilament

M.asured . in Air at Roof Temperature, in Air at 500C
and in Argon at 50000

Run No. 99

Atmosphere Air Air Argon

Test Temperature RT 5000C 5000C

UTS (ksi) 240 159 149
266 159 167
325 192 204

328 192 210

362 198 212

362 207 218

377 214 226
406 214 238

442 305 268

451 310 357

Avg. U (ksi) 356 215 225

Std. Dev. (ksi) 69 53 57

Coeff. of Var. (ksi) 19 24 25
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Table XXVII-A

Individual Tensile Tests of Monofilament
Measured in Air at Room Temperature, in Air at 5000C

and in Argon at 50000

Run No. 103

Atmosphere Air Air Argon

Test Temperature RT 5000C 500 0C

UTS (I~/cm2 ) 153 156 118
226 162 169
239 181 193
262 195- 195
264 199 196
270 200 198
276 223 199
286 226 206
292 227 213
311 255 218

Avg. UTS (KN/cm2 ) 258 202 191

Std. Dev. (KN/cm2 ) 53 37 35

Coeff. of Var. (%) 17 15 15
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Table XXVII-B

Individual Tensile Tests of Monofilmnent

Measured in Air at Room Temperature, in Air at 500
0 C

and in Argon at 5000C

Run No. 103

Atmosphere Air Air Argon

Test Temperature RT 5000C 500 0C

UTS (ksi) 222 226 172

327 235 245

347 263 280

381 283 284

383 388 284

392 289 287

400 323 289

415 327 298
423 330 310

451 371 317

Avg. UTS (ksi) 374 294 277

Std. Dev. (ksi) 64 45 42

Coeff. of Var. (%) 17 15 15
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Table XXVIII

Individual Tensile Tests of Monofilament in the As Produced
Condition and Other Leaching from a Monofilament - Al Composite

Monofilament Run No. NC-102

As Produced Leached from Composite

(KN/cm2 ) (Ksi) 130 187 222 322
165 239 222 322
211 306 226 327
215 312 238 345
215 312 238 345
216 314 240 348
218 317 241 350
226 327 261 379
226 327 271 393
236 343 271 393
267 388 272 395
276 400 274 397
285 414 278 403
290 421
301 437

Avg. UTS (KN/cm2 )(Ksi) 232 336 250 363

Std. Dev. (KN/cm2 )(Ksi) 57 68 26 31

Coeff. of Var. (%) 20 9
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Chemical Composition of Monofilament

Produced in an RF Reactor

Run No. Element Weight Percent

NC 82 B 78
C 22

NC 84 B 76
C 24

NC 86 B 64
C 36
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FIG. I

CHEMICAL VAPOR DEPOSITION DC REACTOR

\ SUBSTRATE FIBER
SUPPLY SPOOL

GAS INLET

MERCURY ELECTORDE

REACTOR BODY

* 0

MERCURY ELECTRODE

TAKE UP
MECHANISM_

R 4This page is reproduced at the
R L-73-47-C back of the report by a different

reproduction method to provide
better detail.



FIG. 2

SCANNING ELECTRON MICROSCOPE PHOTOGRAPH
OF FRACTURE SURFACE OCCURRING WITHIN

A DC REATOR

20 p

This page is reproduced at the

back of the report by a different

reproduction method to provide
better detail
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PeG. 3ELECTRON MICROPROBE ANALYSIS OF A SECTION OF
THE FRACTURE SHOWN IN FIGURE 1

ELECTRON IMAGE

SILICON X-RAYS

CHLORINE X-RAYS

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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FIG. 4

SCANNING ELECTRON MICROSCOPE PHOTOGRAPH OF
A SECTION OF GREAT LAKES CARBON LOT NO. 1142

CLEARED IN CHLORINE AT 18000 C AT A
SUBSTRATE VELOCITY OF 0.594 CM/SEC

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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FIG. 5

SCANNING ELECTRON MICROSCOPE PHOTOGRAPH OF
GREAT LAKES CARBON COMPANY CARBON
SUBSTRATE FIBER LOT NO. 1117 PACKAGE

NO. 3 IN THE AS RECEIVED CONDITION

S 5# I

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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AVERAGE DIAMETER VS DEPOSITION TEMPERATURE

o SUBSTRATE - GREAT LAKES CARBON CO. LOT NO. 1142 PACKAGE NO. 1

O SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1117 PACKAGE NO. 3
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AVERAGE DIAMETER VS SUBSTRATE VELOCITY

o SUBSTRATE - GREAT LAKES CARBON CO LOT NO 1142 PACKAGE NO. 1

O SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1117 PACAKGE NO. 3
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AVERAGE DIAMETER VS TOTAL GAS FLOW

O SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1142 PACKAGE NO. 1

O SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1117 PACKAGE NO. 3
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AVERAGE TENSILE STRENGTH VS DEPOSITION TEMPERATURE

O SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1142 PACKAGE NO. 1

O SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1117 PACKAGE NO. 3
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AVERAGE TENSILE STRENGTH VS TOTAL GAS FLOW

o SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1142 PACKAGE NO. 1

O SUBSTRATE - GREAT LAKES CARBON CO. LOT NO. 1117 PACKAGE NO. 3
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AVERAGE TENSILE STRENGTH VS SUBSTRATE VELOCITY

o SUBSTRATE - GREAT LAKES CARBON CO LOT NO. 1142 PACKAGE NO. 1

O SUBSTRATE - GREAT LAKES CARBON CO. LOT NO. 1117 PACKAGE NO. 3
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FIG. 12

CROSS SECTION PHOTOMICROGRAPHS OF MONOFILAMENT PRODUCED
WITH A TOTAL GAS FLOW OF 600 cc/min

NC-21 11500C NC-22 11700C

NC-23 11900C NC-24 12100C

2This page is reproduced at the
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reproduction eth to provide
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FIG. 13

CROSS SECTION PHOTOMICROGRAPHS OF MONOFILAMENT PRODUCED
WITH A TOTAL GAS FLOW OF 700 cc/min

NC-27 11500C NC-28 1170 0 C

NC-29 11900 C NC-30 1210 0 C

This page is reproduced at the
back of the report by a different
reproduction method to provide 79better detail.



FIG. 14

CROSS SECTION PHOTOMICROGRAPHS OF MONOFILAMENT PRODUCED WITH A TOTAL
GAS FLOW OF 800 cc/min

NC-31 11500C NC-32 11700C

NC-33 11900C NC-34 12100C

S20 ~" This page is reproduced at the
back of the report by a different

reproduction method to provide
80 better detail.



FIG. 15

CROSS SECTION PHOTOMICROGRAPHS OF MONOFILAMENT PRODUCED
WITH A TOTAL GAS FLOW OF 900 cc/min

NC-35 11500 C NC-36 1170 0 C

NC-37 1190 0 C NC-38 12100C
20 y
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back of the report by a different
reproduction method to provide 81
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FIG. 1

TAPERED REACTOR

T r
0.635 cm

66 cm

o- 2.22 cm

NORMAL INVERTED

A. B.
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FIG. 17

SIDE ENTRY PORT REACTOR

-- 2.22 cm

300

61 cm

24 cm

NORMAL SIDE PORT INVERTED SIDE PORT

A. B.
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FIG. 1

SIDE EXIT PORT REACTOR

2.22 cm

61 cm

24 cm

84



FIG. 19
CONTINUOUS RF REACTOR

OPERATING FREQUENCY - 40.68 MEGAHERTZ

6 S.

This page is reproduced at the
RL-73-234-B back of the report by a different 85
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F!G. 20

RF REACTOR GAS SEAL

SEAL GAS 0.254 mm
SAPPHIRE JEWEL

O -- O-RING SEALS

REACTOR
GLASSWARE

- REACTANT
GASES

N02-66-1

86



FIG. 21

RESULTS OF POINT COUNT ANALYSES OF THREE FIBERS,
A REPRESENTATIVE FIBER BEING SHOWN IN THIS FIGUREI CH4 /BCI 3 RATIO = 5

POWER APPLIED 264 WATTS

PLATE

4,5

CORE

AS POLISHED ...
20A/

CONCENTRATION w/o (a/o)

ZONE BORON CARBON

NO. 1 THICK OUTER ZONE 40.0 (42.6) 60.0 (57.4)
NO. 2 DARK THIN ZONE 21.9 (23.7) 78.2 (76.3)
NO. 3 LIGHT THIN ZONE 50.2 (52.8) 49.8 (47.2)
NO. 4 DARK INNER ZONE 29.4 (31.6) 70.7 (68.4)
NO. 5 VERY THIN INNER ZONE 17.4 (19.0) 82.6 (81.0)

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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FIG. 22

CROSS SECTION PHOTOMICROGRAPHS OF MONOFILAMENT PRODUCED
IN AN R.F. REACTOR

NC 82 10p1

NC 84 10
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